Alternating Direction Method of Multipliers for a Class of Nonconvex and Nonsmooth Problems with Applications to Background/Foreground Extraction

نویسندگان

  • Lei Yang
  • Ting Kei Pong
  • Xiaojun Chen
چکیده

In this paper, we study a general optimization model, which covers a large class of existing models for many applications in imaging sciences. To solve the resulting possibly nonconvex, nonsmooth and non-Lipschitz optimization problem, we adapt the alternating direction method of multipliers (ADMM) with a general dual step-size to solve a reformulation that contains three blocks of variables, and analyze its convergence. We show that for any dual step-size less than the golden ratio, there exists a computable threshold such that if the penalty parameter is chosen above such a threshold and the sequence thus generated by our ADMM is bounded, then the cluster point of the sequence gives a stationary point of the nonconvex optimization problem. We achieve this via a potential function specifically constructed for our ADMM. Moreover, we establish the global convergence of the whole sequence if, in addition, this special potential function is a KurdykaLojasiewicz function. Furthermore, we present a simple strategy for initializing the algorithm to guarantee boundedness of the sequence. Finally, we perform numerical experiments comparing our ADMM with the proximal alternating linearized minimization (PALM) proposed in [5] on the background/foreground extraction problem with real data. The numerical results show that our ADMM with a nontrivial dual step-size is efficient.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iteratively Linearized Reweighted Alternating Direction Method of Multipliers for a Class of Nonconvex Problems

In this paper, we consider solving a class of nonconvex and nonsmooth problems frequently appearing in signal processing and machine learning research. The traditional alternating direction method of multipliers encounters troubles in both mathematics and computations in solving the nonconvex and nonsmooth subproblem. In view of this, we propose a reweighted alternating direction method of mult...

متن کامل

Linearized Alternating Direction Method of Multipliers for Constrained Nonconvex Regularized Optimization

In this paper, we consider a wide class of constrained nonconvex regularized minimization problems, where the constraints are linearly constraints. It was reported in the literature that nonconvex regularization usually yields a solution with more desirable sparse structural properties beyond convex ones. However, it is not easy to obtain the proximal mapping associated with nonconvex regulariz...

متن کامل

Benson's algorithm for nonconvex multiobjective problems via nonsmooth Wolfe duality

‎In this paper‎, ‎we propose an algorithm to obtain an approximation set of the (weakly) nondominated points of nonsmooth multiobjective optimization problems with equality and inequality constraints‎. ‎We use an extension of the Wolfe duality to construct the separating hyperplane in Benson's outer algorithm for multiobjective programming problems with subdifferentiable functions‎. ‎We also fo...

متن کامل

Enhancement of Learning Based Image Matting Method with Different Background/Foreground Weights

The problem of accurate foreground estimation in images is called Image Matting. In image matting methods, a map is used as learning data, which is produced by those pixels that are definitely foreground, definitely background ,and unknown. This three-level pixel map is often referred to as a trimap, which is produced manually in alpha matte datasets. The true class of unknown pixels will be es...

متن کامل

An efficient improvement of the Newton method for solving nonconvex optimization problems

‎Newton method is one of the most famous numerical methods among the line search‎ ‎methods to minimize functions. ‎It is well known that the search direction and step length play important roles ‎in this class of methods to solve optimization problems. ‎In this investigation‎, ‎a new modification of the Newton method to solve ‎unconstrained optimization problems is presented‎. ‎The significant ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Imaging Sciences

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017